Long Term Evolution (LTE) has become the most successful mobile wireless broadband technology, serving over one billion users as of the beginning of 2016. However, looking at the penetration rate, LTE serves only 14.5 percent of the current 7.3 billion mobile subscriptions. Consequently, there is still significant room for LTE to grow as a mobile technology; it will be serving users for a long time to come.

The first version of LTE (Release 8) emerged in 2008, and focused on the mobile broadband use case. Together with the smartphone, LTE has given fourth generation (4G) users unprecedented access to mobile broadband services, facilitating social interactions as well as mobile information sharing. LTE evolved to LTE-Advanced in Release 10, which introduced a set of enhancements in order to fulfill the IMT-Advanced requirements. As we look toward the future, new services such as HD video, virtual reality (VR), and augmented reality (AR) will become pervasive, in addition to the expansion of diverse and plentiful over-the-top (OTT) applications, development of the Internet of Things (IoT), and massive machine-type communications. Aside from the requirement for increased data rates and decreased latency, these applications will require profound changes within the cellular network.

Evolving video services will increase the expected traffic load. Currently the 720p screen has become the basic configuration of smartphones and has already been adopted on a large scale by LTE commercial networks. It is estimated that over 50 percent of YouTube video sources supported 720p HD in 2015. In the near future, mobile 2K video will become mainstream, while mobile 4K video is emerging. AR and VR are being demonstrated on a large scale, for example, at the MWC (Mobile World Congress), and haptic feedback is required for some applications such as remote-controlled machines. Together, the increased use of existing video delivery services as well as new interactive AR/VR services pose significant network challenges in terms of capacity, data rates, and latency. For example, 10-15 Mb/s are needed to support 2K video for smooth experience and 30 Mb/s for 4K video, which implies that about 30 simultaneous video streams will demand a capacity exceeding 1 Gb/s.

At the same time, new vertical markets such as smart metering, vehicle communications, wearable equipment, and other types of automation are beginning to enter our day-to-day environments. The concept of cellular IoT (C-IoT), that is, machine-to-machine (M2M) communication via cellular network technologies, will vastly increase the number of smart devices that require always-on demand and online capability within the network. It is not unreasonable to imagine that smart devices and systems like connected cars, connected wearables, the smart grid, and even smart waste bins will eventually connect directly to the Internet. This interconnectivity with C-IoT can dramatically change the way tasks are accomplished, boost productivity, and improve quality of life.

The industry has already recognized this inflection point in the development of cellular networks. LTE Release 13, also known as LTE-Advanced Pro, marks the start of a wide range of enhancements to better address the challenges posed by existing services in addition to new and emerging use cases. This multipart Feature Topic will investigate some promising technologies, including some included in Release 13 as well as promising technologies for the continued evolution towards 5G.

The first article, “Society in Motion: Challenges for LTE and Beyond Mobile Communications,” discusses the challenges in serving a large number of highly mobile users. It presents a survey of existing technologies, and provides special emphasis on open issues and conflicting priorities.

The second article, “LTE Mobile Network Architecture Evolution toward 5G,” discusses the specific architectural properties that will be needed in the evolution of the LTE network. In particular it will elucidate the evolution toward a “network of functions,” networking slicing, and software-defined mobile network control.
The third article, “Massive Carrier Aggregation in LTE-Advanced Pro: Impact on Uplink Control Information and Corresponding Enhancements,” discusses the massive carrier aggregation work in 3GPP. It presents an overview of the enhancements, their impact on uplink control information (UCI) overhead and transmission, and new control channel formats with link-level analysis using Third Generation Partnership Project (3GPP)-defined simulation assumptions.

The fourth article, “Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution,” introduces a promising multiple-input multiple-output (MIMO) strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages. This strategy was designed to alleviate the need for accurate channel information in current MIMO techniques. Open problems, the standards impact, and operational issues are also elucidated in the article.

This is the first part of this Feature Topic, which emphasizes the characteristics of LTE-Advanced Pro. Subsequent parts of will characterize the evolution needed to address further challenges.

JOINED BY

ROBERT W. HEATH JR. is a Cullen Trust Endowed Professor in the Department of Electrical and Computer Engineering at the University of Texas at Austin and a member of the Wireless Networking and Communications Group. He received his Ph.D. in electrical engineering from Stanford University. He is a co-author of the book Millimeter Wave Wireless. His current research interests include millimeter-wave for 5G, cellular system analysis, communication with low-resolution ADCs, and vehicle-to-X systems.

MICHAEL HONG (mh@eecs.northwestern.edu) is a professor in the Department of Electrical Engineering and Computer Science at Northwestern University. He received his B.S. degree in electrical engineering from Stanford University in 1977, and his Ph.D. degree in electrical engineering from the University of California, Berkeley, in 1981. Prior to joining Northwestern he worked at Bellcore in the Systems Principles Research Division. His recent research has focused on resource allocation for wireless networks and spectrum markets.

SATOSHI NAGATA received his B.E. and M.E. degrees from Tokyo Institute of Technology, Japan. He joined NTT DoCoMo, Inc., and worked on the research and development of wireless access technologies for LTE and LTE-Advanced. He is currently working for 5G and 3GPP standardization. He has contributed to 3GPP for many years, and contributed to 3GPP TSG-RAN WG1 as a Vice Chairman. He has been the Chairman of 3GPP TSG-RAN WG1 since 2013.

STEFAN PÄRQVALL [S’92, M’96, SM’05] is a principal researcher at Ericsson Research, active in the area of 5G research and 3GPP standardization. He received his Ph.D. degree from the Royal Institute of Technology in 1996, served as an IEEE Distinguished Lecturer 2011–2012, and co-authored several popular books such as 4G-LTE/LTE-Advanced for Mobile Broadband. He received the Ericsson Inventor of the Year award and the Swedish government’s Major Technical Award for contributions to HSPA, and was nominated for the European Inventor Award for contributions to LTE.

ANTHONY C. K. SOONG [S’88, M’91, SM’02, F’14] (anthony.soong@huawei.com) is the chief scientist for Wireless Research and Standards at Huawei Technologies Co. Ltd., in the United States. His research group is active in the research, development, and standardization of the next generation cellular system. He has published numerous scientific papers and has over 90 patents granted or pending. He received his Ph.D. from the University of Alberta, and 2013 IEEE Signal Processing Society Best Paper Award and 3GPP2 2005 Award of Merit.